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Taming few-femtosecond laser pulses  
with a novel machine-learning algorithm   

Ultrafast spectroscopy is based on lasers being able to produce pulses that 
are as short as a few femtoseconds. These ultrashort transients are strongly 
affected by propagation through materials. Their temporal profile is required 
before any application. We propose a scheme for their characterization in-situ 
and a machine-learning algorithm, called vector space Newton interpolation 
cage (VSNIC), that uses data from ab-initio calculations to recover temporal 
properties of the pulses. 
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for a Gaussian laser pulse:
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where k identifies the group delay dispersion (GDD), I0 is the
peak intensity, !0 is the central circular frequency of the field,
�! is the full width at half maximum (FWHM) of the field
spectrum, and ' is the carrier-envelope phase (CEP). Following
Eq. (1), the FWHM duration of the laser pulse is given by
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Here, �t = 4 log(2)/�! is the duration the pulse has if it is
transform-limited (k = 0).

In order to calculate the autocorrelation, two replicas of the
above-described pulses were employed to ionize atomic argon
in the strong-field regime. Autocorrelation patterns were pro-
duced by computing the yield of Ar+ as a function of the delay
⌧ between the two replicas. In our work, the strong-field ioniza-
tion process was modeled by using the configuration-interaction
dynamics package for multichannel dynamics (XCID) [15,16].
XCID employs the time-dependent configuration-interaction-
singles (TDCIS) approach for solving the time-dependent
Schrödinger equation from first principles (see the Supplemental
material for more details). Its accuracy in strong-field ionization
calculations has been demonstrated (see, e.g., Ref. [17]). TDCIS
provides the flexibility needed to generalize the proposed pulse
characterization method to regimes where optical tunneling is
not the most prominent ionization mechanism. In the specific
case of optical tunneling, TDCIS could be replaced by a suitable
Keldysh-type model [18].

We chose argon as a good compromise between experimental
sensitivity and simulation accuracy. The lighter the atom, the
higher the accuracy of TDCIS numerical calculations. Light
atoms, however, have a relatively high ionization potential,
which results in a band-pass filter for the ionizing pulse to be
characterized.

In our TDCIS calculations, each autocorrelation pattern
consists of an n-component vector with n = 51 ionization prob-
abilities, corresponding to 51 di�erent time delays. Specifically,
we considered time delays ⌧ in the range from �12.1 fs through
+12.1 fs, with a delay step of �⌧ = 0.484 fs. We ensured that the
delay step was small enough to accurately define the shape of
each autocorrelation curve. At the same time, we chose �⌧ to be
large enough to keep the number of TDCIS calculations required
manageable. Further decreasing of the time step does not show
significant improvement in pulse characterization accuracy. In
Fig. 1, we show the computed autocorrelation pattern, i.e., the
yield of Ar+, for two exemplary situations: a transform-limited
pulse and a pulse with a GDD of 20 fs2. In both cases, the
transform-limited duration �t is 4.84 fs, the photon energy is 1.65
eV (750 nm wavelength), and the peak intensity is 5 TW/cm2.

Following the same protocol, we generated a database of
approximately 3000 autocorrelation patterns by varying the rela-
tive CEP between the two replicas from 0 through 2⇡, the
GDD parameter k from 0 through 20 fs2, and the transform-
limited duration �t from 5 through 15 fs. Concerning the laser
peak intensity, we observed that the autocorrelation pattern
remains unaltered—apart from its overall amplitude—for inten-
sities between 1 and 8 TW/cm2. For this reason, we kept the
peak intensity fixed at 5 TW/cm2.

Fig. 1. The Ar+ yield—the autocorrelation pattern—for two
pulses that di�er only in their GDD and the corresponding electric
fields E(t).

In order to characterize the laser field in Eq. (1), the spectral
width �! and the GDD parameter k must be retrieved. Alterna-
tively, the latter can be replaced with the pulse duration � [see
Eq. (2)]. In addition, the autocorrelation patterns are sensitive
to the relative CEP, �', between the two pulse replicas.

Algorithm. Our novel ML algorithm is called vector space
Newton interpolation cage (VSNIC). It works in vector space,
uses Newton interpolation, and creates a caging volume, all of
which we explain in the following.

Here the algorithm works on the database of computed auto-
correlation patterns. For all patterns in the database, the three
parameters �, �! , and �' are known. The ⇠ 3000 data vectors
in 51 dimensions constitute the not-so-big data for a type of
supervised learning where the data is used directly. The popu-
lar, but indirect, approach of employing neural networks is not
needed. Moreover, neural networks are approximations of the
data—even at datapoints from the underlying database—so we
also avoid the intrinsic error of such networks.

In a preprocessing step, the n ionization probabilities p(i) for a
given set of pulse parameters are shifted for every i by the mean
value p̄(i) for that i (average over all vectors in the database) and
rescaled by the standard deviation�(i) of the distribution of p(i) in
the database. Thus, the n-component data vectors x that VSNIC
works with are given by
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This approach [19] ensures that every component of x has the
same relative weight in the following distance calculations.

For a vector x with unknown pulse parameters, the simplest
way these parameters can be determined [20,21] is by finding
the nearest neighbor x1 in the n-dimensional data vector space,
minimizing the Euclidean distance
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vt

n’
i=1

(x(i) � x(i)
1 )2. (4)

Then one identifies the unknown pulse parameters of x with the
pulse parameters underlying x1.

In order to determine a more accurate parameter set, we
choose from the database of rescaled vectors two additional
vectors, x2 and x3, close to x. We then determine the param-
eters associated with x by constructing from x1, x2, and x3 a

The Ar+ yield—the autocorrelation pattern—for two pulses that differ only in 
their group delay dispersion (GDD) and the corresponding electric fields E(t).


