Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

Friday, June 17th 2016 - 15:30 CFEL, Bldg. 99, Seminar room IV

David Hsieh

Institute for Quantum Information and Matter, California Institute of Technology

Revealing Hidden Phases in Correlated Electron Systems using Nonlinear Optics

The iridium oxide family of correlated electron systems is predicted to host a variety of exotic electronic phases owing to a unique interplay of strong electron-electron interactions and spin-orbit coupling. There is particular interest in the perovskite iridate Sr₂IrO₄ due to its striking structural and electronic similarities to the parent compound of high- T_c cuprates La₂CuO₄. Recent observations of Fermi arcs with a pseudogap behavior in doped Sr_2IrO_4 and the emergence of a *d*-wave gap at low temperatures further strengthen their phenomenological parallels. In this talk I will describe our recently developed nonlinear optical spectroscopy and wide field microscopy techniques, which are highly sensitive to both the lattice and electronic symmetries of crystals. I will present results on the Sr₂IrO₄ system that reveal a subtle structural distortion and a hidden electronic phase that have previously eluded other experimental probes. I will comment on its relevance to the pseudogap region and also draw comparisons with our recent nonlinear optical data in the pseudogap region of the cuprates.

