Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

Friday, November 4th 2016 - 10:00 CFEL Seminar room IV (Bldg. 99)

Kazuhiro Yabana

Center for Computational Sciences, University of Tsukuba

TDDFT in solids for electron dynamics induced by ultrashort laser pulses

Since 2000, we have been developing a real-time, real-space computational method based on time-dependent density functional theory to describe electron dynamics in crystalline solids induced by light pulses. In a microscopic scale, we solve the time-dependent Kohn-Sham equation in a unit cell of solid treating the applied electric field is by the vector potential. We further combine the microscopic calculation with the dynamics of light electromagnetic field in a multiscale modeling, as describe in the figure. In my presentation, I first explain our method including some historical aspects. Then I will show some recent and on-going applications such as energy transfer from a femtosecond laser pulse to electrons in quartz and graphite, and ultrafast changes of dielectric properties of diamond by an intense laser pulse.

