

SEMINA

11

SCIENCE

CFEL – Building 99, seminar room IV (1st floor)

Henning Friis Poulsen

Technical University of Denmark, Department of Physics, Lyngby

Multiscale Movies of Microstructure Evolution

Many materials such as metals, ceramics and rocks are structurally organized in a hierarchical fashion. Likewise industrial components often have a complicated 3D geometry. The establishment of 3D materials models that can predict the structural changes on all relevant scales during synthesis and operation would be a game changer for optimization of materials and components. The 4th generation x-ray sources provide truly unique options for establishing and testing such models via the acquisition of 3D movies of structural elements, orientations and local strain at several length scales.

A dedicated microscope at ID06, ESRF, is established with the aim to explore these possibilities. 3D mapping at the micron-scale is provided by 3DXRD and tomography. Dark field transmission x-ray microscopy allows focusing on embedded grains and domains with a resolution of currently 50 nm. The highest resolution is to be provided by use of coherent x-ray methods. I present the principle of the microscope, discuss the relevance of various x-ray optics - such as compound refractive lenses and multilayer Laue lenses - and demonstrate its use for studies of plasticity, domain evolution in ferro electrica, bio-minerals, and 3D mapping of dislocations.