

12th June, 2014 - 14:00 bldg. 99, seminar room II (EG.078)

Emilio Nanni

Massachusetts Institute of Technology, USA

Linear electron acceleration in THz waveguides

We report the first experimental demonstration of linear electron acceleration using an optically generated single cycle THz pulse centered at 0.45 THz. 7 keV of acceleration is achieved using 10 μ J THz pulses in a 3 mm interaction length. The THz pulse is produced via optical rectification of a 1.2 mJ, 1 μ m laser pulse with a 1 kHz repetition rate. The THz pulse is coupled into a dielectric-loaded circular waveguide with 10 MeV/m on-axis accelerating gradient. A 25 fC input electron bunch is produced with a 60 keV DC photo-emitting cathode.

The achievable accelerating gradient in the THz structures being investigated will scale rapidly by increasing the IR pulse energy (100 mJ - 1 J) and correspondingly the THz pulse. Additionally, with recent advances in the generation of THz pulses via optical rectification, in particular improvements to efficiency and generation of multi-cycle pulses, GeV/m accelerating gradients could be achieved.

An ultra-compact high-gradient THz accelerator would be of interest for a wide variety of applications such as free electron lasers and medical linear accelerators.