

18th November 2013 – 11:00 a.m. ZOQ (bldg. 90), seminar room

SEMINA

Kenichi L. Ishikawa

Graduate School of Engineering, The University of Tokyo

Multielectron dynamics in intense laser fields

Exposed to intense laser pulses, atoms and molecules exhibit highly nonlinear response such as above-threshold and tunneling ionization, high-order harmonic generation (HHG), and nonsequential double ionization. These have opened new research possibilities including ultrafast molecular probing, attosecond science, and extreme-ultraviolet nonlinear optics.

Theoretical description of atoms and molecules in intense laser fields is challenging. Direct solution of the time-dependent Schrödinger equation, though exact in principle, is unfeasible for multielectron systems beyond He [1-3] and H_2 .

Here we present the time-dependent complete-active-space self-consistent-field (TD-CASSCF) method [4]. It introduces the concept of frozen-core, dynamical-core, and active orbital subspaces. The classification into the subspaces can be done flexibly, according to simulated physical situations and desired accuracy, and the time-dependent Hartree-Fock (TDHF) and the multiconfiguration TDHF (MCTDHF) approaches are included as special cases. This feature allows compact yet accurate representation of ionization dynamics in many-electron systems, bridging the huge gap between TDHF and MCTDHF methods.

We show and discuss the simulation results for the ionization dynamics and HHG in one-dimensional lithium hydride (LiH), LiH dimer [(LiH)₂], and beryllium (Be) models. The present method closely reproduces rigorous MCTDHF results if active orbital space is appropriately chosen. The TD-CASSCF method will open a way to the first-principle theoretical study of intense-field induced ultrafast phenomena in realistic atoms and molecules.

[1] K. L. Ishikawa and K. Midorikawa, Phys. Rev. A 72, 013407 (2005).

- [2] K. L. Ishikawa and K. Ueda, Phys. Rev. Lett. 108, 033003 (2012).
- [3] S. Sukiasyan, K. L. Ishikawa, and M. Ivanov, Phys. Rev. A 86, 033423 (2012).
- [4] T. Sato and K. L. Ishikawa, Phys. Rev. A 88, 023402 (2013).

Hosts: Franz Kärtner and Shaobo Fang, CFEL