

22nd September 2011 - 10:15 Building 49, Seminar Room (108)

Nicholas Walker

School of Chemistry, University of Bristol

Chirped-pulse Fourier transform microwave spectroscopy of halogen-bonded and metal-containing complexes

Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy allows the simultaneous measurement of pure rotational transitions across a bandwidth of more than one gigahertz. Advantages of the new technique include the possibility of rapid data acquisition and the opportunity to compare transition intensities across a broad frequency interval. The design of a CP-FTMW spectrometer recently constructed at the University of Bristol will be described. The spectra of Kr…ICF₃, OC…ICF₃, H₃N…ICF₃ and (CH₃)₃N…ICF₃ have been assigned to determine the length of the halogen bond in each complex and observe internal rotation in H₃N…ICF₃ and (CH₃)₃N…ICF₃.

The spectra of $H_2O\cdots ICF_3$ and $H_2S\cdots ICF_3$ display interesting features that cannot be modelled using simple Hamiltonians. A laser ablation source has recently been added to the CP-FTMW spectrometer allowing the study of metal-containing complexes. The molecular geometries of OC···AgI and $H_2S\cdots AgI$ have been determined from their broadband rotational spectra. These results will be placed in context of other recent work to characterise the molecular geometries of $H_2O\cdots MCI$, $H_2S\cdots MCI$, $H_3N\cdots MCI$ and $C_2H_4\cdots MCI$ by microwave spectroscopy, where M=Cu or Ag.

Host: Melanie Schnell - CFEL Molecular Physics seminar