Real-time approaches are becoming increasingly important in understanding photon spectroscopies ranging from linear and non-linear optical response to x-ray absorption spectra (XAS). In this talk I will discuss several methods based on a real-time approaches.

First we discuss a real-time approach for calculating the dynamic structure of nano-scale materials base on finite-temperature density functional theory / molecular dynamics and the real-space Green’s function approach in the FEFF9 code [1]. This approach exploits recent advances that permit parameter-free calculations of the key many-body effects in the theory. The method is illustrated for the case of Pt nanoclusters supported on gamma-alumina [2], and explain many of the unusual properties observed for such catalytic materials.

Second, I discuss our real-time, time-dependent density functional theory (RT-TDDFT) approach for calculations of frequency-dependent linear and non-linear optical response. This approach is based on calculations of the time-dependent Hamiltonian using SIESTA and an explicit Crank-Nicholson time-evolution of the wave-functions [3].

Finally, I discuss a generalization of this real-time approach for core-level x-ray response based on time-correlation functions and prospects for generalizations to case of high-field strengths.

*Supported by DOE Grant DE-FG03-97ER45623 and NSF Grant PHY-0835543.