Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

Monday, September 17th 2018 - 14:30 CFEL Seminar Room IV, Bldg. 99

Andrew P. Mackenzie

Max Planck Institute for Chemical Physics of Solids, Physics of Quantum Materials Dept., Dresden University of St. Andrews, School of Physics and Astronomy, St. Andrews, Scotland

Strain tuning of quantum materials

In this talk I will discuss the development of novel methods of applying uniaxial pressure to single crystals of quantum materials. Much of our work so far has been on ruthenates, but I will also mention projects on other materials. I will show that it is now possible to strain single crystals, reversibly, to change lattice parameters by at least 1%, and that this provides a 'tuning energy scale' equivalent to the Zeeman energy of magnetic fields of well over 1000 T. Uniaxial techniques are particularly suited to controlled tuning through Lifshitz transitions, and are also a useful complement to epitaxial strain in then films, which is usually biaxial.

Host: Andrea Cavalleri

