Max-Planck-Institut für Struktur und Dynamik der Materie

Max Planck Institute for the Structure and Dynamics of Matter

Thursday, December 6th, 2018 – 14:00 p.m. CFEL Seminar room IV (Bldg. 99)

Zongyou Yin

The Australian National University, Canberra, ACT Australia

Nano Surface Science and Engineering for Energy Conversion and Diamond Transistors

Nano science and technology offer a vast and fascinating playground to explore the novel physiochemical properties of nanomaterials with the development for various applications including energy conversion and electronics. In this talk, I will present the recent investigation on the surface chemistry and physics and their effects on the nanoscale electro/photo-catalysis and diamond-based surface charge doping, such as surface molecular tunable crystal phase engineering with two-dimensional (2D) WS₂ towards stable electrocatalytic hydrogen evolution reaction, surface oxygen vacancies from MgO porous nanoparticles for stable photocatalytic water splitting with gold's local plasmonic further enhancement; and hydrogenated MoO₃ layer as a novel efficient sustainable surface charge acceptor for diamond transistors. These surface science and engineering enable the enhancement of functional efficiency and the extension of performance stability in electro/photo-catalysis and electronics. This talk highlights the synergistic surface science and engineering can provide the opportunities to customize nanomaterials for advanced applications development.

Host: Angel Rubio

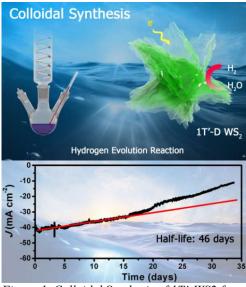


Figure 1. Colloidal Synthesis of 1T'-WS2 for stable electrocatalytic hydrogen evolution

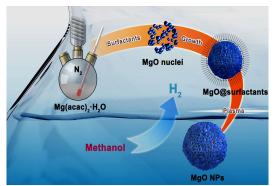


Figure 2. Monodispersed MgO porous nanocrystals for photodecomposition of methanol to CO_x -free H_2 fuel production

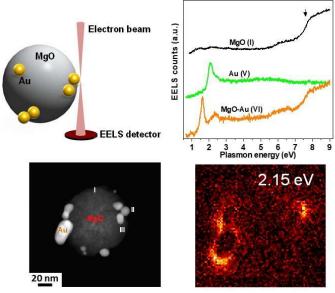


Figure 3. Electron Energy Loss Spectroscopy (EELS) measurements of plasmon resonances of Au-MgO nanostructure to be applied for water splitting

References

[1] Z. Liu, et. al., Nano Energy, 50 (2018), pp. 176-181.

- [2] Z. Liu, et. al., Sci. Adv., 2 (2016), e1501425.
- [3] Z. Liu, et. al., 2018 under submission.